A Remarkable Sensitivity of CaO-loaded In₂O₃ Element to CO₂ Gas in the Presence of Water Vapor Noritaka MIZUNO,* Kazuyoshi KATO, Tetsunori YOSHIOKA, and Masakazu IWAMOTO* Catalysis Research Center, Hokkaido University, Sapporo 060 The ln_2O_3 element modified by 5.5 wt% CaO showed the sensitivities (the ratio of resistance of the element in air containing no CO_2 to that in a diluent CO_2 gas) to 2080 ppm CO_2 as high as 12.9, 9.9, and 6.6 in the presence of 0, 1.1, and 1.8 vol% water vapor, respectively. The demand of the simple detection of ppm-level CO_2 gas has grown up for the controlling of the industrial processes and environmental technologies.¹⁻¹⁰⁾ To date, solid electrolyte,¹⁻³⁾ mixed oxide capacitor,⁴⁾ K_2CO_3 -polyethylene glycol solution supported on porous ceramics,⁶⁾ hydroxyapatite,⁷⁾ and SnO_2 -based semiconductor⁸⁻¹⁰⁾ have been reported as CO_2 sensing materials. However, several problems remain to be solved; the sensitivity of these sensors to the ppm-level CO_2 gas is still low and the presence of water vapor greatly decreased the sensitivity.¹⁰⁾ Here we wish to report a pronounced sensitivity of CaO-loaded In_2O_3 element to 2080-ppm CO_2 gas both in the absence and in the presence of water vapor. In_2O_3 was prepared by the hydrolysis of $InCl_3 \cdot 4H_2O$ with aqueous ammonia followed by the calcination at 1123 K for 5 h in air. The formation of cubic In_2O_3 was confirmed by XRD. The sensor element was prepared by the impregnation of In_2O_3 element with aqueous solution of metal nitrate or acetate by coating with a brush as described previously.⁹⁾ Sample gas containing 2080 ppm CO_2 in dry air balance was used. Prior to each resistance measurement, each element was exposed to dry air (60 cm $^3 \cdot min^{-1}$) at 773 K for 1 h. The resistance was measured at 573 K. The sensitivity to CO_2 was defined as the ratio of resistance of an element in air containing no CO_2 to that in a sample gas, R_{air}/R_{CO_2} . Transient response usually became the same after the second turning-on and -off cycle. The effect of the 1.1 vol% water vapor on the sensing characteristics of CaO(5.5 wt%)-loaded In₂O₃ is shown in Fig. 1c. The sensitivity was 9.9 in wet air. The value was further decreased in 1.8 vol% water vapor However, it is noteworthy that the and was 6.6. sensitivity was still high in the presence of water vapor. On the other hand, in 1.1 vol% water vapor the sensitivity of the pure In₂O₃ was more greatly decreased to be about half of that in dry air. In addition, the 90% response time of CaO-loaded In2O3 element was greatly shortened from 40.0 to 12.0 min by the presence of water vapor. These facts show that the CaO-loaded In₂O₃ element would have the bright prospect of detecting CO2 with high sensitivity in the presence of water vapor. ## References - S. Yao, Y. Shimizu, N. Miura, and N. Yamazoe, Chem. Lett., 1990, 2033. - M. Gauthier, A. Belanger, and D. Fautex, "Proc. Intern. Meeting Chem. Sensors, Fukuoka, 1983," Kodansha(Tokyo)-Elsevier(Amsterdam), 1983, p. 353. - 3) T, Ogata, S. Fujitsu, M. Miyayama, K. Koumoto, and H. Yanagida, *J. Mater. Sci. Lett.*, **5**, 285 (1986). - T. Ishihara, K. Kometani, and Y. Takita, J. Electrochem. Soc., 138, 173 (1991); 68th Meeting of the Catalysis Society of Japan, Sapporo, Sept., 1991, Abstr., No. 4G310. - J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, and B. C. Tofield, J. Chem. Soc., Faraday Trans. 1, 84, 441 (1988). - 6) Y. Shimizu, K. Komori, and M. Egashira, *J. Electrochem. Soc.*, **136**, 2256 (1989). - 7) M. Nagai and T.Tadashi, Sens. Act., 15, 145 (1988). - 8) S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, *Chem. Lett.*, **1989**, 845. - 9) T. Yoshioka, N. Mizuno, and M. Iwamoto, *Chem. Lett.*, **1991**, 1249. - 10) J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, *Chem. Lett.*, **1990**, 1243. Fig. 1. Response transients (second turning-on and -off cycle) to 2080 ppm CO_2 of In_2O_3 (a) and $CaO(5.5 \text{ wt%})-In_2O_3$ (b, c) elements at 573 K. (a) and (b), in dry air; (c), in wet air (1.1% water). \uparrow , CO_2 on; \downarrow , CO_2 off. Table 1. Sensitivities of metal oxide-loaded In₂O₃ elements to 2080-ppm CO₂ at 573 K | Metal oxide | Sensitivity | |--------------------------------------|-------------| | loaded | | | None | 7.8 | | Li ₂ O(6.3) ^{a)} | 2.7 | | $Na_2O(1.0)$ | 1.9 | | $K_2O(1.1)$ | 3.9 | | MgO(1.0) | 4.4 | | CaO(5.5) | 12.9 | | SrO(1.3) | 10.2 | | BaO(1.2) | 9.7 | | $V_2O_5(1.1)$ | 3.1 | | NiO(1.5) | 5.0 | | ZnO(1.2) | 2.7 | | $ZrO_2(1.1)$ | 3.8 | | $Pr_2O_3(3.7)$ | 1.1 | | $Nd_2O_3(8.2)$ | 1.3 | | | | a) Amount of metal oxide loaded/wt%. (Received June 3, 1992)